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This paper presents the solution to the problem in theory of elastlcity for
two connected half-spaces with a circular crack in the plane of joining.
Starting with the Griffith criterlon, the value for critical stress 1s found.

1. Pormulation of predblem and derivation of boundary conditions. We con-
sider the problem of elastic half-spaces with different elastic properties.
In the plane connecting these half-spaces there is a circular crack of radius
¢ . At infinity a’ tensile stress p = const 1s applled perpendicular to
the plane of the crack. Rectangular coordinates are chosen so that the
boundary of the elastic half-spaces coincldes with
the plane =z = 0 ; the origin 1s located in the

///,————-—~4L\\\ center of the crack (Fig.l).

4z

k4
Z : e The solution of this problem is sought in the
; form [1]
- | _ ap - ap
z u=q+z5, V=Pt z5
Fig. 1 d
w =y + 250 (1.1)

Here u (2, y, z), v (xy, 2),w (x,y, z2) are projections of elastic dis-
placements on the axes of the rectangular coordinates; o¢;,, 95, @, and ¥
are spuce functions of x, y, z, connected by relation

op 1 op1 03 03
% =w=3lo o+ o) (1-2)

where v 1is Poisson's ratlo.

Expressing the stresses in terms of deformations, using Equations {(1.1),
we find the components of the stress tensor G,, Ty;, Ty; on the plane z = 0
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0: (2 9, 0) = (b + 20) 5 (@ +¥) + (52 4 5B) (1.3)
T 0 =p (B oy 0 —a (B R

where x and p are the Lamé coefficlents. From {1.1), placing =z = 0, we
obtain
u(z, ¥, 0) = Py (:Z‘, Y 0), v (z, Y 0) =g, (x! Y. 0)

w (z.y, 0) =95 (z, 3, 0) (1.4)

All quantities related to the upper half-space are designated by plus, to
the lower by minus.

Boundary conditions for the problem are as follows., On the crack from
above and below are normal stresses ¢,* and ¢, of value p , tangential
stresses are absent., Exterior to the crack the half-spaces are welded.
Taking intc account Equations (1.3) and (1.4), the condition for the deter-
mination of unknown functions g,, ®,, ®; and § may be written in the

form
ok 2m) 2o+ )+ 0 (B N =, (PR O
(he 4 2112) 5 (004 ) +x2(—§-—-+—§——)-—p, pe (B 4+ 2+ )0
((')(p: +r?cp3 ) 0, (6q>2 +6cp3 +_\_p~)=0
(Interior to crack p== V¥ % + 2 < a) (1.5)

(M -2 Ml)az(% + v )+7‘1(5{p1 +6%§) =
= (Ao + 210) 2 (95" + V) + 7‘*2,(%: + égs;;)
o (B0 4 S Yy, (R S O
(8@2 _+'3¢3 _%,aw+) g(ag" 6@3 +3 )
(1.6)

0" =@ @ =0y @37 = 937 (gxterior to crack p= VELH>a)

Here %,, u, and i,, p, are Lamé coefficients for the upper and lower
half-spaces respectively. Let us introduce harmonic functions corresponding

to the upper and lower half—spaces
1p+ 4\,3 3(@4'}’ + Ps )s ‘P_ ’V _3 (@4 + (Ps )

(v T (k=1 2)) 1.7
B2t :

From (1.2) and (1.7) it follows that
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dpst Ot | Oget 99~ __ 0p1~ 3<P|‘
oz =8_x+8_y’ "9z "““+ (1.8)
Using (1.2) and (1.8) , from the first and second of Bquations (1.5) we
obtain dpst 1 dpat g3~ 1 g
P — 4 e = Cu o — 4 = Ce (1.9)
A+ 2 +3p
& k Ay k
A = = =
( k By » O = 2 oy + 2 P k=1, 2))

Let us differentiate the third and the fifth of Equations (1,5) with res-
pect to x and to y and add
o 02 + opit | Ogst
51 [(6_—1‘5 + ayz) (qu + \Y ) + ( ™ + W)] =0 (1°10)
Thus functions ¢, 8and ¢ are harmonic, then

(78 + 25) @+ 9% = — B @0 + %) (t.41)

Substituting (1.11) into (1.10) and taking into account (1.7) and (1.8)
we obtain

2o 4 4, 2% o (b <a) (1.12)

0z2
Analogously, from the fourth and sixth of equations (1.5) we have

T+ 4,2 0 (p<a) (1.13)
Using (1.2) and (1.8), we put the first equation of (1.6) in the form
acp gt 0 dps—
B — D =B, p,% (5 (1.14)
I U»k -+ 2y Wy
e WE = Thank v ol ) (1.15)

Differentiating the second and third of Equations (1.6) by x and y
respectively, adding and taking into account (1.7), we get

ot Pyt 0y~ 0%Qq~

DiYr —Bigy = Dy —Ba (p>a) (1.16)
Multiplying the first equation of (1.9) by B,;, the second by B, sub-

tracting and taking into account that B,/ A, =D, B,/ A, =D, and

C B, —C,B, =0, ve get

Blaq)a Dla% 26q>3 =+ D28q>4 =0 (p<a) (1.17)
Analogously from (1.3) and (1,13) we find
92, 92@s— a2 ,
D, 2% B T — D, 4+ B, T 0 b<a)  (1.18)

Integrating Equation (1.13) we obtain @3~ — A,¢,” =K, (z, y), where
K, (z, y) 1s an unimown harmonic function.

In the case under consideration the state of stress is axially symmetric,
therefore functions ;- and @,” must be axially symmetric. Therefore,



1280 V.I, Mossakovskii and M.T. Rydla

¥a(x,y) = ¢ 1s a constant subject to determination.

Thus, boundaru conditions for the determination of ¢, and o, are

G L0 e — A= (p<<a)  (1.19)
Ps" =95, ag’;* - ?%_‘ (0> a) (1.20)

D% D, %5, T 5, % o

o aq)a s 6q>3 6% b, %_ _ (z=0) (1.21)

We introduce the following functions for consideration:
9s* (2, ¥y 2) = @5 (2, ¥, — 2), ot (9,2 =9, (2,9, — 2
From relation (1.21) we have

(pa* = E(Pa_ — H(Pq,— B1B3 + D1D2 B1D2 + B2D1
¢a* = Hos™ — Eqq~ <J = De—B¢ q= Dy — By? ) (1.22)

Now the boundary conditilons exterior to the crack are transformed to the
form

- - a1 opa
o — A =0, T W0 >0 (a—yy) (1:23)
We introduce functions F,(x,y,z) and Fy(x,y,z) with the help of rela-
tion ’
. Fy=¢y — 49", Fa=e7 — os (1.24)

From (1.19) and (1.23) we obtain for the functions a problem in potential
theory

Py 0 =c, [Lred] _c <o 1.25)

P(ey0) — AFy(eg,0) = 0, 22500 polbnd] o (>a

AZ—“AO 1 A()Az
(4= 25 g 4 B=5 200 4)

8. Reduotion of axielly symmetrio problem in potential theory in three
dimensions to the subsidiary potential theory problem in the plane. In the
half-space z < O two harmonic functions F,(x,y,x) and F,{x,y,z) are given
subject to boundary conditions (1.25).

Functions F,(x,y,s) and Fy(x,y,2), by virtue of the independence upon
angle g , are designated, correspondingly, F,(p,z) and F,(p,z) and we

represent them in the form
(o]

Folp, D=\ fi @7y (o) errda (=12 (2.1)
0
Differentiating (2.1) with respect to & , we get

ar, (o, &
Tan D\ h@alpe) et k=12 2.2)

0
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where J,(ax) 18 the Bessel function of zero order, We make use of the
repreasentation of a Bessel function in the form of & contour Integrals [ 2]

4 c+ico2‘JF (1/ /
I S __2__’32 -1y 8~1
Jo(pot)—zm X T 07 1as) plof-1ds
cioo
c+ico gl-op (1 1/ ) (2-3)
LA a8) ane1

d-’ (pa‘) an g 1° (1,’28) p dn ds
c—ioo

Substituting these expressions in Equations (2.1} and (2.2), changing the
order of integration in the two integrals obtained and designating

S #e (@) ¢-1eazde = D, (s, 2) t—1, 2) (2.4)
we get o i
100

Frip, z) = 1 % D, (s z)w) p*1ds

k pl af = 21“ ) kD r(1/2 _i‘ 1/26') [aS
ceion (k=1,2 (2.5)

BFk (p, 3) 1 . 2150 (1 — a8) o
— e = \ Dy (s, 2) T p-ads

We Introduce funetions U, (x,z) and 0,(x,z), harmonie in the half-space

z < 0, antleymmetric wlth respect Yo x, with the ald of the relation
o0
1 .
Up (x, 2) = S —a~f;¢ (o) sin (az) e*2du (=12 (2.6)
¢
Differentiating {(2.6) by =z , we obtain
W, (z,2) ¢ _
— = X fi (@) sin (ox) e2?da 2.7

]

We substitute in (2.6) and (2.7), instead of functions a~!sin (az), sin (az)
their representations

c+ico
1 . 1 o1-8 (14, 1
o sin (d«’t} = 27t S V?f _—P_(i(—f{l;l—/;;/)—gﬂxsaﬂ—lds
;j"“ g (2.8
— 2T (4 —Ys)
in (o) = FS V' m-;/—zg—;s—)x’ lgr-1ds
Changing the order of Integration &nd taldng advantage of (2.4) we get
‘—C-Q-IOO 21—811 (1/2 ‘—1/28) .
Uk (E, ) = CQSOO Vﬂ(D_gl S Z)m)——x ds
o (s g (k=1.2) (29)
I (%, 2 9850 (] —1
Tam D K VAW, (5, 2) o] (1/i+1/::;) 2*-1ds

From the well lknown f'i)_rl:ula
1

i1 (] — pyigy — DT @)

§x (I = dr =3ty
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one easily obtains (3]

p2a~1 (‘rz ,)2)ﬂw1dp — 11 (1) P (gi x2a+2ﬁ__2

X
g % T (2 -
]
s (2.10)
P oy ERNCIIRE
2a-93+1 2 1 =
Sp (P2 dp=o g
X
Taking advantage of Equations (2,10), form (2.5) and {2.9) we find
a7 Frlo 2) U (x, 2) CF 0 2) Al (
B L A O Sttt AT A Wl I A A
axg‘/xz,,p-zp b= m&ﬁ”’:mzpdp_z" 3z (2.11)
]
ol x (x.2) dx I (' aUA( ) xdr aF}g (ps 2)
= — T = Fi(p, z - O — (242
ZTE§ &d.i‘ VPE*— z k (p ) ‘)'59 dp\ Py V{-‘2 T gz ( J
U g ¢ U 2 de 0F,(p. 5) ¢ OUL(r 2) g
_—— R = . S o F z
250 (?pg dx Vot pt oz 25 5 0z Vat— 2 k() 2)
(=1, 2 (2.13)

On the basis of Equations (2,12), which are valid alsc for 2z = O, bound-
ary conditions (1.23) are reduced to the form

W0y ey, (LD g (o1 <a)
da H ai _[ T=p (2.14)
o 3 Gl (w2 s (o ] ) -
(9(.1( ‘D,_BLIU} 0) =0, “——-]"S"ll-»f)--A(w-—f—,(‘;*’} =0 (12 ]3> a)
T de L Jz dz =0

Here . p
o Cudo K

iy == ji = i o, {x) == ’3 . i”<\ ' Q :\
f ( ) il \ ‘/—.,‘.z R ’ &2 ( ) \

Thus, the axlally symmetric problem of potential theory, formulated in
the beginning of this Section, 1s reduced to the following plane problem in
potential theory: find the value of functions U, {x,z) and ¥,(x,z) which
are harmonic in the half-plane g < 0 , if boundary conditions {2.14) are
given.

3. B8olution of the plans problem in potential theory. In the sequel,
following Muskhelishvill [4], the half-plane z < O we designate by S,
the upper half-plane 2z > 0 we designate by S*. The interval —g< x < &
on axls Ox we designate by ', the remaining portion of the axls is [”.
The functions U, (x,#) and U,(x,#), harmonic in the half-plane =z < O ,will
be regarded as the real parts of analytic functions &, (¢) and &,(()

(¢ =x + ta) e
Ui (x, 2) = 43 @ (D) + Y@ (E) (k=1,2) (3.1)
From (3.1) we obtain

U, — AU P — /
el QA0 D =g Q-5 DD k=12 (32

ox
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Setting sz to zero in Equation (3.,2) and substituting the value of func-
tions 23U,/3x and aU,/az 1in the conditions (2.14), we get boundary condi-
tions for the determinafion of functions &, (¢) and $,(() in the form

OB = 2 (2) ey

@, — D = — 2ig, (x) .3
‘E“+&??~&m“—36?=0} . 9
O, — B — A0 + 4B =0 ™

Let us introduce functions @, (¢) and 0,({), analytic over the entire

plane ¢ , with the exception of & slit, coinciding with L’,by means of
relations
D, (L) — BD, (T) = Q, (D), D, (L) — ADy (£) = 2, (L) 5 s 3.4)
Q' () —BD, (0) = — 9, (1), Dy (5) — 4D, (1) = (L) » s+
Boundary conditions for 0,(¢) and 0,(¢) on 1’ are
A _ B _ A B -
A—BQI —a—p —A—BO+ A—B %' =28, (2) , _
1 1 1 1 on L (3.9)
A—pN — g% T g = — 2 ()

Conditions on 1 ” are satisfied by the selection of functions o (C) and
02(¢). Equation (3.5) 1s reduced to the problem of linear relationship

_B+VA4B T_A=VAB[ _ B+ VARG "=
__ 2(A—B)
T ALV AB

2@ —E=Y 20, )| 4 VB — V0w -
2(A— B)

- m[gl (x) + iV ABg, (3] (3.6)

Solving the problem of linear relationship we find

%@ =2 B2 ~ [ (te) — (8) 7]+
e

9@ == ) - (] -

" i g 52 + ) - ) 09
(_g_ A+Vza
"= 4y iz

(& (x) — l]/ ABgz ()]
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After functions 0, (¢) and 0,(() are determined, boundary values for
functions 3V,/ax and ay,/ar are easily found.

The constant (¢ 1s found from the following condition.
Punctions 0, (¢) and 0,(¢) being derivatives of regular functions at
infinity, must vanish at .least as z~!. This gives
C = V ABaxC,i (3.9)

4. The determination of the oritical stress, normal and shear stresses
gxterior to the orack on the plane of jolning. The existence in the body of
a circular crack of radius @ reduces its potential energy by an amount

1 >
Wzﬂgp(uﬁ—w—) ds (4.1)
o]
where p*, w are the displacements on the lower and upper boundary of the
gap, the domain of integration ¢ 1s the circle of radius a .

In addition, the crack has surface energy U , equal to
U = 2na®T, (4.2)

where T, is the speciflc surface energy. According to Griffith (5], the
condition necessary for the enlargement of the crack consists of the follow-

ine 2 W —1U)=0 4.3)
From relation {(4.3) we get the criterion of failure.
Displacements ' and - on the basis of (1.4) are
w*(z,y, 0) =y (2, %, 0), w (2, ¥, 0) = ¢5” (2, %, 0)

Integral (4.1) may be written in the form
2n a a

W= PS de S (s — @37) pdp = 7p S (93" — @57) pdp (4.4)
0 0 0

Making use of (3.7), (3.8), (3.2), (2.11) and (1.21), we find (4.5)

o = o (D S {ar[(E2)+ (22 ]+

) -G vt (5 ) erV B

05 = o (VEG=D gy i {an (22 (227 ] +
0

Ay —1/A, a—{—z

o6 -5 T vems (50— S )V Do)

Substituting the value of (4.5) in (4.4) and changing the order of inte-
gration we obtain
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_ mpCyi E—1 H—A4,(E—1 — g3
W= A2—1/Az{[H_ A4 B ]VABTE“‘“

a

+ 143 (B— 1) — B} YEOZD (g [(a=2)y (222)™] 4

a-tx
o
a—a\Y ta—x\7¥ ——3
+o|G3) — () ) Vo=t (4.6)
The integrals entering in (4.6) are computed by means of the relationship
[2] 1
@11 — P10y — LT3
§ 2l — 2 tde = (4.7)
We have
a—m a—x _ TERENTECL—
S (G2 '+ G5) Ve —vir = 4o E)
0
a—:z: a—--:c Y T 2Py = 40° 5 3
Sx (ER) -G V=2 = GG =) (F+1)-
) =
We calculate the value of gamma functions by means of the relations
I' 1 + 2) = 2T (z), THI (1 — 2 =ncsenz 4.9)

and we substitute the value of (4.8) into (4.6). Then we get

W= amlr [ RV AR

-f- [H — A, (E — 1)] w( 2
Taking into account that

3: cos :\:‘}'} a3’r (4'10)

A E
CO8 Y = ——o——, }\‘k = kVk s Py = _"‘ﬂ*— (If =1 2)
VA2 — 42 A+v)—2v) 2(14vy) '

and substituting the value of the constants from (1.9}, (1.22), (1.23) and
{(1.25), we get Equations
_2napt 0aE:® 4 91E2? 4 2E101Es (1 4 va) (1 + va) 2 3
W=—5% E\Eq By (1 +v2) (1 — 2va) — Eay (T vi) (1 —2w1)] (8% +1)8a® (4.11)
0 = 1 By (1 +v2) 3 —4dve) -+ Ea (1 - vy)
o Ei(t+v2)+ B2 (14 v) (3 —4vy)

Byp = (1-—2v1)(1 — 2¥g) + 4 (1 — v1) (1 —vy) (4.12)

e =1+ w)2B—4w) k=12

Here &, and g, are Young's modull for the upper and lower half-spaces
and v, and Vi are Polsson's coefficlents.

Substituting w from (4.11) and ¥ from (%.2) in the relation (4.3),we
find the critical stresses depending on the radius of the crack
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2TE By [E1 (1 4 va) (1 — 2vg) — Ea (1 + v1) (1 — 2v1)] \'a
[O2E1% 4 1892 + 201016 (1 + v1) (1 + v2)] (82 + 1) Ba)

Hence, 1in the case of an lsotropic body (El =FbEy=E, vy =v, = V)
the result of Sack [6] follows

Y
Po = V m (4.14)

Sack has extended the Griffith theory of fallure to the three-dimensional
case. In the special case where one of the half-spaces is absolutely rigid
(£, = =), the collapse occurs when

= (4.13)

Po = ( 2nTE 0
0 a (14 vo) (3 —4vo) [Yer ™ In? (3 — 4ve) + 1] In (3 — 4'\72))

(4.15)

Using (1.3), {(1.23}, (2.13), (3.7), (3.9) and carrying out certain trans-
formations, we obtain the formulas for the determination of normal and shear

stresses exterior to the crack on the plane of Joilning (4.16)
Q
S _ 4p E1(1— va?) 4+ Ey (1 —vi2) T2 2a%0%
S \e "32"':5@)

£y (1 -+ va) (1 —_— 2‘\/’2) — E, (1 -+ vi1) (1 — 2v1)
1

. p—at 2p 1 - p—at aB) dt
XSm(Bhlp+ag+«w_wm-+Eqa8c%(®h%*wJ%~?J77foﬁ

0
o

- [f_’i Ey(1—wv?) 4+ Ez (1 — vi¥) [ 2a%0% 1
Yo = 0 BT+ va) (1 — 2va) — B3 (1 T 1) (1 — 2va) X [\pz— @’ ‘T) X
1
p — at 2pa® . p—at 1 dt
X €OS (8 In o F at) -+ —— sin (8 In m) + T‘l m (4.17)

Integrals in (4.16) and (4.17) are obtained by numerical evaluation.
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