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This paper presents the solution to the problem In theory of elasticity for 
two connected hall-spaces with a circular crack In the plane of joining. 
Starting with the Qrlfflth criterion, the value for critical stress Is found. 

1. Formulation of psoblrm and derivation of boundary oondltlonr. We con- 
sider the probleti of elastic half-spaces with different elastic properties. 

In the plane connecting these half-spaces there Is a circular crack of radius 

a . At Infinity a'tenslle stress p - const Is applied perpendicular to 

the plane of the crack. 
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Fig. 1 

Rectangular coordinates are chosen so that the 

boundary of the elastic half-spaQs coincides with 

the plane z = 0 ; the origin Is located In the 

center of the crack (Flg.1). 

The solution of this problem Is sought In the 

form [l] 

(1-l) 
Here u (2, y, z), v (zy, z), w (2, y, z) are projections of elastic dls- 

placements on the axes of the rectangular coordinates; g,, qlr 9, and $ 

are sptrce functions of X, y, Z, connected by relation 

a* 1 -= 
az 

--(""'+!%+!j&) 
4~-3 ax (1.2) 

where v Is Poisson's ratio. 

Expressing the stresses In terms of deformations, using Equations (l.l), 

we find the components of the stress tensor I&, Z;t., 'Cyz on the plane z = 0 
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(4.3) 

where k and u are the Lame coefficients. From (1.1), placing z = 0, we 

obtain 
n G? Yt 0) = ‘pl (2, YI o>, 2) (a, YI 0) = ‘pz (5, $49 0) 

20 (5,. $490) = rp, (3, y, 0) (2 4 

All quantities related to the upper half-space are designated by plus, to 

the lower by minus. 

Boundary conditions for the problem are as follows. On the crack from 

above and below are normal stresses Q*+ and u,- of value p , tangential 

stresses are absent. Exterior to the orack the half-spaces are welded. 

Taking into account Equations (1.3) and (1.4), the condition for the deter- 

mination of unknown functions cpI, 92 9 CPJ and $ may be written in the 

form 

(Interior to crack p = y’x2 f y2< u) 

+ = (F1-, ‘p2+ = (p*-, f&+ = 
(1.6) 

cpl %- (Exterior to crack p = dzg + SJ~> a) 

Here X, , ur ad La, pa are Lame coefficients for the upper and lower 

half-spaces respective1y. Let us Introduce harmonic functions ~Orres~ond~nE 

to the upper and lower half-spaces 

W= 1, 2,) (4.7) 

From (1.2) and (1.7) it follows that 
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aq4+ 
aZ- 

w+ __+w, acp4- 
aZ _ac!+$$ (L8) 

Uelng (1.2) and (1.8) ) from the first and second of Equations (1.5) we 
obtain aTa+ 1 av4+ ----= c aw- 

a2 AI az 19 
1 aF- c 

az-~-z-=~ cw 

( 

%f4+ 
Ak = - 

pk 
, Ck = 21pky+2pkJ P (k = 1, a) 

Let UB differentiate the third and the fifth of Equation8 (1.5) with ree- 

pect to x and to y and add 

we 

A[ (ga + 6) (93’ + $+) + g (y + fg)] = 0 (1.10) 

Thus functions cp~ and * are harmonic, then 

(&i + &) (%I+ + $+I = - a: (‘pS+ + $+) (1.11) 

Substituting (1.11) Into (1.10) and taking Into account (1.7) and (1.8) 
obtain 

a!+ _/Q?$T=O (P < a) (1.12) 

&alogouely,from the fourth and sixth of equatlona (1.5) we have 

‘g+ Aza&=O (P < a) (1.13) 

Using (1.2) and (1.8), we put the first equation of (1.6) In the form 

B,~.-&!!$=B,a$-&‘!! 
(P >a) (1.14) 

Bk = pk @k + 2pk) 

‘k + 3pk ’ 

Jq,= _!!L 

‘k + 3pk 

(k = 1, 2) (1.15) 

Differentiating the second and third of Equation8 (1.6) by r and y 
respectively, adding and taking Into account (1.7), we get 

D a2q3+ B a2(P4+ _ D a2’pS- 
l a22 l a22 

___ _ 
2 a22 

B w4- 
a a22 (P > a) (1.16) 

Multiplying the first equation of (1.9) by B,, the second by B,, sub- 
tracting and taking into account that B, / A, = D,, B, / A, = D,, and 

C,B, - C,B, = 0, we get 

B av3+ B a(P3- 
l az 

D “P4f 
l aZ 

2x+D2%-=0 (P <a) (1.17) 

Analogously from (1.3) and (1,13) we find 

D a2v3’ __B aaq4+ 
l aza 

__-_2!$-+B2.?!&() 
1 ai4 (P < a) (1.18) 

Integrating Equation (1.13) we obtain Q- - A,cp,- = K 2 (z, 3)~ where 

K, (z, y) Is an -own harmonic function. 

Inthe case under consideration the state of atrees ie axially symmetric, 

therefore functions cps- and rp,’ must be axially synnnetrlc. Therefore, 
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KP(&Y) - c is a constant subject to determination. 

Thus, boundaru conditions for the determination of e and ‘pa are 

alps- I a(p4- c 
---_.= 2, 

az Aa dz 
cp3- - A2qa- = C (P < a) 

cp3+ =q3-r 
a’p4+ &u- -=- 
az 8Z 

(P > a) 

D 1 -- ayul+ D 2 aqb- -- aza a22 B lx+B2as= aa(pa+ 0 

BI!%&B2as- Dlas+ D2a$: = 0 
(z = 0) 

We Introduce the following functions for consideration: 

‘ps* (x7 9, 4 = 93 (2, Y, - 4 (P4+ (5, Y, 4 = 94 b, Y? - 

From relation (1.21) we have 

‘~3~ = EQ- - HQ- BlDz + Bz& 
(pa* = Hqs- - Eva- 

F = B&a i- LWz 
J Dla_Bp 1 H= &2_-&2 

(1.19) 

(1.20) 

(1.21) 

Z) 

(1.22) 

Now the boundary conditions exterior to the crack are transformed to the 

form 
(P~--A,,(P~-=O, a~_~a~=o 

A0 az (~>a) (Ao =gi) (1.23) 

We introduce functions ~,(r,y,z) and F,,(Gc,Y,z) with the help of rela- 

tlona 
F, = ‘us- - A,%-, F, = (p3- - Ga(p4- (1.24) 

From (1.19) and (1.23) we obtain for the functions a problem In potential 

theory 

Fl (x9 Y, 0) = c, aFab, Y, 2) 
a2 1 z (P<U) Z=O c2 (1.25) 

F,(x, y,O) - AF,(z,y,O) = 0, jaF1 ‘1, VI ‘) - B aFa ‘;; ‘, ‘)j_ = 0 (P > a) 

Aa--& 
A=l-AoAzAa~ 

I- AoAz 
B= Aa_AAo Aa i 

P. lhduotlon of a&ally sysmatrio problem in potential theory in three 
dimoMlon8 to tho 8ubrldlarJr potential th8orJ problem in the plane. In the 
half-space I < 0 two harmonic functions Fi(k,y,#) and F*(r,y,*) are given 

subject to boundary conditions (1.25). 

Functions F,(x,y,,) and plp(x,~,x), by virtue of the independence upon 

angle cp, are designated, correspondingly, r,(p,r) and F~(P,z) and we 

repreeent them In the form 
co 

FI, (P, z) = s fk (a) Jo (Pa> eaLda (k=l, 2) 

0 

Differentiating (2.1) with respect to 8 , we get 

aFk (P, Z) 
a2 

= r fk (a) aJ,(pa) eazda (k = 1, 2) 

0 

(2.1) 

(2.2) 



emornliution or Ok. orirfith.anmddon er1tm+J?l 1281 

where J,,(U) la the Bessel fbnotion of zero order. We n&e use of the 

representation of 8 Bessel function In the form of a contour Lntegrale [2) 
ctim 

(2.3) 

Substituting these expressions in Equations (2.1) and (2.2), changing the 

order of Integration In the two integrals obta;lned and desQnatlng 
m 

[ ft (a) as-Vzda = 01~ (s, z) tk - 1, 2) 

We introduce functions VI (~,a) and Vs(x,a), harm~nio Ln the half-space 

Z-CO, antisymmetric with respect to z, with the aid of the relation 
cc 

uk (x, z) = -+ fk (a) sin (ax) ~ar&~ (k = 1. 2) (24 
0 

Mfferentiatlng (2.6) by z , we obtain 

12.7) 

We substitute In (2.6) and (2.7), instead of functions U-l sin (cm), Sin (ax) 
their representations 

Changing the order of titegrat;ion and taking advMtsge Of (2.4) We get 

a1 
- 

“” 

From the well Known formula 



1282 V.I. "O~e~kOvakii and M.T. RybM 

one easily obtains [3] 
.% 

Tak%ng advantage of Equations (2.10), form (2.5) and (2.9) we find 

On the basis of Equations (2.12), which are valid also for z = 0, bound- 

ary condltlons (1.23) are reduced to the form 

Thus, the axially symmetric problem of potential theory, formulated In 

the beginning of this Section, Is reduced to the following plane problem In 

potential theory: find the value of functions U,(X,~) and u~(x,z) which 

are harmonic in the half- plane # c: 0 , if boundary conditions (2.14) are 

given. 

3. t3OlUtlOn OS the pbn8 problem In potantl81 theory, In the sequel, 

following Huskhellshvlll [43, the half-plane p < 0 we designate by S, 

the upper half-plane z > 0 we designate by $“. The Interval - a < x < a 

on axls Ox we designate by L’ , the remaining portion of the axis is L”. 

The functions U,(_Y,Z) and U.(x,s), harmonic In the half-plane z < 0 ,will 

be regarded a8 the real parts of analytic functions *,(C) and @,(C) 

(c * x + f.2) 

From (3.1) 

Uh (x, 2) = ‘:;$Dh. (5) + li,% (5) 

we obtain 

(k-1, 2) (3.1) 
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to zero In Equation (3.2) and eubstitutlng the value 6f WC- 

and a&h In the conditions (2.14), we get boundary condi- 

determinafion of functions #,(C) and r,(C) In the form 

Q,‘-+ T’- z %?I (5) - 
CD,‘- - Dz’+ - - 2ig, (x) 1 

on L’ 

Q’- + q’f - BcDz’- - B@,,+ = 0 
(3.3) 

ml’- - cDl’+ __ _ A(&‘; + A@,z’+= 0 I On L” 

Let us introduce functions t?,(c) and n,,(c), analytic 

plane c , with the exception of a slit, coinciding with 
relations 

@I’ (5) - B@,’ (5) = 62, (5), @,’ (5) - A@g’ (5) = 

51’ (j) - Bs2’ (5) = - s1, (Q, $’ (5) - A@;,’ (5) = 

Boundary COndltlOnS for Cl, (C ) and n,,(c) on 1. ’ are 

over the entire 

L’,by means of 

% (5) B s- 
(3.4) 

a, (5) B s+ 

on L’ (3.5) 
, I _.+Q1-_ _L - A-LI Q,- + A+* ‘I+ + 

Conditions on L’ are satisfied by the selection of functions n, (C) and 
n,(c). Equation (3.5) la reduced to the problem of linear relationship 

Solving the problem of linear relationship we find 

52, (5) = 2 (A -B) 2ayC,i - &) [iEjY - (Ej-r] + 

+ C,G [(E j’ + (#$)-‘I - 2Gi5) (3.7) 

Q22 (5) = 2A;.*){C,ig i(K)-’ - (EjY] - 

&J[(&g-’ + (E)‘] - &} (3.8) 
- 

A+6AB 
A--I/% 
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After functions n,(C) and n,(C) are determined, boundary values for 
functions W&C and aU,/ar are easily found. 

The constmt C Is found from the following condition. 

Functions n,(c) and n,(C) being derlvatlves of regular functions at 

infinity, must vanish at,leaet as 2-l. This gives 

c = I/ABayC,i 

4. The drtermlmtlon of the orltloal l tramm, norawl and mhaar mtrommrm 
)xfmlor to the oraok on thm plum o? joinln(. The existence in the body of 

a circular crack of radius c reduces Its potential energy by an amount 

W = f \ 1 p (w+ - w-) dci 
a 

(4.1) 

where J, W- are the displacements on the lower and tipper boundary of the 

gap, the domain of Integration a Is the circle of radius a . 

In addition, the crack has surface energy U , equal to 

U = 2xa2T, (4.2) 

where T, Is the specific surface energy. According to Griffith [5], the 

condition necessary for the enlargement of the crack consists of the follow- 

ing 
; w -U)=O 

From relation (4.3) we get the criterion of failure. 

Displacements m* and W- on the basis of (1.4) are 

w+ C&Y, 0) = 93+ (z, Y9 O), w- (2, y, 0) = 'ps- (29 99 0) 

Integral (4.1) may be written ln the form 

IV= $ pydvi (qs+-q3-)& ="p\ ('pa+ -(~39 pdp 
0 0 0 

Making use of (3.7), (3.8), (3.2), (2.11) and (1.21), we find 

(4.4) 

(4.5) 

Substituting the value of (4.5) In (4.4) and changing 

gratlon we obtain 

the order of inte- 
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j/f7 = nPC2i 
-42 - i/A2 

H-E-f H - Aar(E - 1) 
-44 B 1 

+~~~(~-~)-HI~*~~-*'~ (ay[(~)y+(u~)--P]+ 

+L#~)q~)-$izq (4.6) 
The Integrals entering In (4.6) are computed by means of the relationshlp 

E 21 1 

c 
za-i(l - (4.7) 

;I 

x)8-ldx =; ;;t);';) 

We have 

We calculate the value of gamma functions by means of the relations 

r (1 + 2) = zr (z), r (2) r (1 - 2) =Jtcsc3rz (4.9) 

and we substitute the value of (4.8) into (4.6). Then we get 

w = nPCa 1 
AZ - AZ-1 2- 

+gIH-A,@ 

Taking into account that 

A 
co8 =i. = v~2 , hk = 

(4.10) 

Ekvk Ek 
(I + Vk) (1 - 2Vk) ’ f-h = 2 (i -t_ Yk) (k I-- 1.2) 

and substituting the value of the constants from (1.91, (1.221, (1.23) and 

(1.251, we get Equations 

w= _2npr 62E12 + 6&22 + 2E1612Ea (1 + ~2) (1 + ~2) 
3 h’1E‘2 [El (1 + v2) (I- 2va) - E2 (I+ VI) (I - zvl)] 

(@a + 1) @a3 (4.11) 

O= &In EI ff + ~2) (3 - 4~2) + Ea (1 + vi) 

El (1 + vz) + E2 (1 + VI) (3 - 4~1) 

- 2Yz) + 4 (1 - VI) (1 - ,vz) 

tfk = (1 + v1,)‘(3 - 4?&) (k = 1, 2) 

(4.12) 

Here _E, and ga are Young's moduli for the upper and lower half-spaces 

and v, and vg are Poisson's coefficients. 

Substituting IV from (4.11) and y from (4.2) In the relation (4.3),we 

find the critical stresses depending on the radius of the crack 
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~‘&1Ea[El(l + va)(l- 2Ya)- Ea(l + ~1)(1- 2v1)l ‘/a (4.13) 

Hence, In the dase of an Isotropic body (El = Es = E, V1 = V2 = V) 

the result of Sack 161 follows 
,- -_. 

(4.14) 

Sack haa extended the Orlfflth theory of failure to the three-dimensional 

case. In the special caee where one Of the half-spaces is absolutely 

hi = ==), the collapse occurs when 

ZnT,E 
PO = (~(1 + vz) (3 -44~~) [~/Qx-~ Ina (3 - 4Ya) + 11 In (3 -4%) 

v. 

Using (1.3), (1.23), (2.13),, (3.7), (3.9) and carrying out certain 

formations, we obtain the formulae for the determination of normal and 

etreaaes exterior to the crack on the plane of jolting 
0 

rlgld 

(4.15) 

trans- 

shear 

(4.16) 

4p EI( l--G)+ B9(1 --VI?) 
” = 7 El(1 + Ya) (I-~YZ)- iiz(l+ ~1)(1-2~1) 

Xsin 
( 
@In 

z 4P Ea (I- ~2’) + Ea(l - ~1~) 
P’--ii- E~(I+va)(I-2~z)-Ea(l+V~)(l-~~~) 

X COs 8 In 5) + *sin (e In ‘$) + $1 t vtkh i 
(4.17) 

Integrals ln (4.16) and (4.17) are obtained by numerical evaluation. 

BIBLIOGRAPHY 

1. Leonov, M.Ia., Oenovy mekhanlkl uprugogo tela (The Foundations of Mechan- 
ics of an Elastic Body). Izd.Akad,Nauk KazSSR, 1963. 

2. Tltchmareh, E., Vvedenle v teorllu lntegralov F'ur'e (An Introduction to 
the Theor 
lzdat, 19 8. g 

of Fourier Integrals). Rusalan translation, (fostekhteoret- 

3. Mossakovakil, V.I., Osnovnala smeehannala zadacha teorll uprugostl dlla 
poluproetranetva B krugovol llnlel razdela granlchnykh uslovll (Funda- 
mental mixed problem In the theory of elasticity for a half-space with 
Tg;;rcular line separating the boundary conditions). PMM Vo1.18, I@ 2, 

4. Muskhellshvlll, N.I., Nekotorye osnovnye zadachl matematlcheskol teorll 
upr 
city . T 

oetl (Some Basic Problems ln the Mathematical Theory of Elasti- 
Izd.Akad.Nauk SSSR, 1954. 

5. Griffith, A.A., The phenomenon of rupture and flow in solids. Phllos. 
Trane.Roy.Soc., A. 221, p. 163-198, 1920. 

6. Sneddon, I., Preobrazovanle Fur'e (Fourier Transforms). Russian trans- 
lation, Izd.lnoatr.llter., 1955. 

Translated by L.M.K. 


